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Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling

K. A. Matveev1 and A. V. Andreev2,3

1Department of Physics, Duke University, Box 90305, Durham, North Carolina 27708
2Department of Physics, University of Colorado, CB 390, Boulder, Colorado 80309

3Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, New Jersey 07974
~Received 10 January 2002; revised manuscript received 10 April 2002; published 9 July 2002!

We study Coulomb blockade oscillations of thermoelectric coefficients of a single-electron transistor based
on a quantum dot strongly coupled to one of the leads by a quantum point contact. At temperatures below the
charging energyEC the transport of electrons is dominated by strong inelastic cotunneling. In this regime we
find analytic expressions for the thermopower as a function of temperatureT and the reflection amplituder in
the contact. In the case when the electron spins are polarized by a strong external magnetic field, the ther-
mopower shows sinusoidal oscillations as a function of the gate voltage with the amplitude of the order of
e21ur u(T/EC). We obtain qualitatively different results in the absence of the magnetic field. At temperatures
between EC and ECur u2 the thermopower oscillations are sinusoidal with the amplitude of order
e21ur u2ln(EC /T). On the other hand, atT!ECur u2 we find nonsinusoidal oscillations of the thermopower with
the amplitude;e21ur uAT/ECln(EC /T).

DOI: 10.1103/PhysRevB.66.045301 PACS number~s!: 73.23.Hk, 73.50.Lw, 72.15.Jf
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I. INTRODUCTION

It is well known that electric current in solids can b
caused not only by an applied electric field but also by
temperature gradient. This gives rise to a number of inter
ing thermoelectric phenomena.1,2 It is important to note that
thermoelectric phenomena in metals require an asymm
between electrons and holes. Indeed, in a perfectly elect
hole-symmetric system the temperature gradient will ca
currents of electrons and holes equal in magnitude, wh
result in a zero net electric current.

Many recent studies of thermoelectric effects focused
mesoscopic systems.3–11 Thermoelectric properties of thes
systems are particularly interesting because the electron-
asymmetry in mesoscopic devices is usually strong and
be controlled experimentally by tuning external paramet
such as the gate voltage or magnetic field.

Of the various thermoelectric phenomena the Peltier
fect is probably the most important for technological app
cations: when an electric currentI is passed through a syste
in the absence of the temperature gradient, it is accompa
by the heat current

I Q5PI . ~1!

HereP is the Peltier coefficient. The use of the Peltier effe
has been proposed for refrigeration in conditions when v
ous technological constraints, such as the size of the de
outweigh the power efficiency considerations. The strong
hancement of the particle-hole asymmetry in mesoscopic
vices and their small size make them very promising can
dates for microrefrigerators.6

In the last few years many experimental and theoret
studies7–11 focused on the thermoelectric properties
single-electron transistors~SET’s!. Thermoelectric effects in
these systems can be controlled by the gate voltageVg ~Fig.
0163-1829/2002/66~4!/045301~15!/$20.00 66 0453
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1!, and exhibit characteristic Coulomb blockade oscillatio
Most of the studies of thermoelectric effects in the Coulom
blockade regime concentrated on the thermopower

S52
V

DT U
I 50

. ~2!

Here V is the voltage induced across the device in the
sence of a net electric current when the temperatures of
two leads differ byDT, Fig. 1~a!. The Peltier coefficientP is
related to the thermopowerS by an Onsager relationP
5ST.

The theory of the Coulomb blockade oscillations in t
thermopower of single-electron transistors in the weak t
neling regime was developed in Ref. 7. This theory takes i
account only the lowest order tunneling processes, i.e.,
sequential tunneling, and neglects the cotunneling proces
Its results were in agreement with the experiments of Ref
Later9 it became possible to experimentally access the
gime of lower temperatures and stronger coupling to
leads, where the cotunneling processes become domina
theoretical description of this regime was recently given
Ref. 11.

In experiments with GaAs heterostructures the quant
dot is connected to the leads by quantum point conta
Each contact is usually in the regime when only one tra
verse mode can propagate through it, and the transmis
coefficient for this mode can be controlled experimenta
Recently10 Coulomb blockade oscillations in the the
mopower of a SET, with the quantum dot strongly coupled
one of the leads, were studied for various values of the
flection coefficientur u2 in this contact. The setup of thes
experiments is schematically shown in Fig. 1~b!. In the re-
gime of strong coupling,ur u2!1, nearly sinusoidal oscilla-
tions of the thermopower as a function of the gate voltageVg
were observed.
©2002 The American Physical Society01-1
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The theories of thermopower for the weak tunneling
gime developed in Refs. 7 and 11 rely upon the perturba
theory in the strength of coupling between the quantum
and the leads. This perturbative approach fails when the c
pling to the leads is strong. Previous theoretical work
Coulomb blockade systems with strongly coupled quant
dots12–15 was devoted to the studies of their thermodynam
properties and conductance. These properties are not s
tive to the electron-hole asymmetry, and a calculation of
thermoelectric properties requires a nontrivial generaliza
of the approach of Refs. 14 and 15.

In this paper we develop a theory of the thermopower i
SET with a quantum dot strongly coupled to one of the le
@Fig. 1~b!#. We consider a relatively large quantum dot
which the quantum level spacing is small, and the elect
transport is dominated by inelastic cotunneling. In Sec. II
present a qualitative discussion of thermoelectric transpo
a SET. Some interesting symmetry properties of the dep
dence of the thermopower on the gate voltage are discu
in Sec. III. Our main results for the thermopower of a SET
the regime of strong inelastic cotunneling are presented
Sec. IV. We consider both the simpler case of spin-polari
electrons and the more interesting spin-degenerate case
discuss the results and compare them with experiment
Sec. V.

FIG. 1. ~a! Setup of the thermopower measurement in a sing
electron transistor. A quantum dot is capacitively coupled to
gate and connected to the two leads by tunneling junctions.
electrons in the left and right leads are maintained at temperat
T1DT andT, respectively, and the voltageV across the device is
measured. The thermopower@Eq. ~2!# is measured as a function o
the gate voltageVg . ~b! A SET with a quantum dot strongly
coupled to the right lead by a single-channel quantum point con
The cross3 in the constriction represents the backscattering in
contact resulting in a finite reflection coefficientur u2.
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II. QUALITATIVE DISCUSSION OF THE THERMOPOWER
AT WEAK INELASTIC COTUNNELING

The physical meaning of the thermopower can be dedu
from the Onsager relationS5P/T. One can easily see from
Eq. ~1! that the Peltier coefficient is determined by the av
age energŷe& of the electrons carrying current through th
system, measured from the chemical potential:P52^e&/e.
Thus the thermopower measures the average energy o
tunneling electrons in units of the temperature:

S52
^e&
eT

. ~3!

Heree is the absolute value of the electron charge. The
erage energy of the charge carriers^e& is determined by a
particular mechanism of transport through the system.

A conventional SET, schematically shown in Fig. 1~a!,
consists of a quantum dot weakly coupled to two leads. T
transport of electrons from the left lead to the right one
achieved by either sequential tunneling or cotunneling~elas-
tic or inelastic!.

The sequential tunneling refers to the lowest-order tunn
ing processes in which one electron tunnels into or out of
dot. As a result of each tunneling event the charge of the
changes by6e. When an electron tunnels into or out of th
dot, the electrostatic energy of the system increases byu1 or
u2 , respectively. The values ofu1 andu2 are of the order
of the charging energyEC5e2/2C, whereC is the capaci-
tance of the dot; their values can be tuned by adjusting
gate voltageVg . The electron that tunnels into the dot has
have the energye'u1 in order to charge the dot, so th
tunneling is exponentially suppressed at low temperature
e2u1 /T. Similarly the rate of tunneling out of the dot is sup
pressed ase2u2 /T. The thermopower of a SET in the regim
of sequential tunneling was studied in Ref. 7.

The cotunneling mechanism accounts for the coher
second-order tunneling processes in which at the first ste
electron tunnels from, say, the left lead into the dot, and
the second step this or another electron~for elastic and in-
elastic cotunneling, respectively! tunnels from the dot to the
right lead. Since as a result of cotunneling processes
charge of the dot remains unchanged, the electrons par
pating in the transport through the dot do not need to h
large energies;u6 , and the transport is not suppressed e
ponentially at low temperatures. It is important to note th
the elastic cotunneling involves elastic propagation of el
trons between the tunneling contacts in the dot. The resul
contribution to the transport is inversely proportional to t
volume of the dot. Thus in relatively large dots the finit
temperature transport is dominated by inelastic cotunne
processes.

In order to find the cotunneling thermopower of a SE
one needs to evaluate the average energy^e& of the electron
transferred through the device. Inelastic cotunneling invol
electrons within the energy strip of width;T near the Fermi
level. The probabilityw(e) of the second-order tunnelin
process is inversely proportional to the square of the ene
of the virtual state,
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w~e!}S 1

u11e82e
1

1

u21e2e8
D 2

, ~4!

where we assumed that the electron with energye tunnels
into a state of energye8 in the dot. The energiese ande8 are
of the order ofT and small compared to the charging en
gies u6 . One can therefore expand Eq.~4! in small (e
2e8)/u6 :

w~e!}S 1

u1
1

1

u2
D 2F112S 1

u1
2

1

u2
D ~e2e8!G . ~5!

Thee-dependent correction in Eq.~5! shows that the tun-
neling probability increases or decreases with the energye of
the tunneling particle depending on the sign of (u1

212u2
21).

Since the typical energye;T, the relative magnitude of the
term breaking the electron-hole symmetry in Eq.~5! is
;T(u1

212u2
21), and the average energy of the tunneli

particles is^e&;T2(u1
212u2

21). Then using Eq.~3! we es-
timate the thermopower of a SET as

S5l
T

e S 1

u2
2

1

u1
D . ~6!

Herel is a numerical coefficient of order unity; its valuel
54p2/5 was found in Ref. 11.

An interesting feature of result~6! is that the ther-
mopower does not depend on the strength of coupling of
dot to the leads. This feature is expected to persist as lon
the transmission coefficients of the barriers are small. Ho
ever, as the barrier approaches the regime of perfect tr
mission, the Coulomb blockade oscillations of physic
quantities are expected to disappear.13,14 One should there-
fore expect that in the regime of strong coupling the th
mopower will depend on the reflection coefficientur u2 of the
contact.

It is also worth mentioning that the thermopowerS
;e21T/EC in a SET is much greater than the typical val
S;e21T/EF of the thermopower in metals; hereEF is the
Fermi energy. This is a consequence of the fact that
charging effects in the dot enhance the electron-hole as
metry. We will show in Sec. IV that such a behavior of t
thermopower atT→0 persists in the strong-coupling regim

III. KINETIC COEFFICIENTS

In this paper we restrict ourselves to the linear respo
regime when both the temperature difference between
leadsDT and the voltageV across the device are small. Th
thermopower@Eq. ~2!# is defined in terms of the voltageV
induced by the temperature differenceDT at zero current. In
practice, however, it is easier to calculate the current
sponse

I 5GV1GTDT. ~7!

Here G is the conductance of the SET, andGT is the ther-
moelectric coefficient describing the current response to
applied temperature difference. Thermopower~2! can then
be expressed as
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GT

G
. ~8!

Before we start the calculation let us establish useful sy
metry properties of the kinetic coefficientsG andGT . These
properties apply to the SET described by a Hamiltonian
the form H (0)1EC(N̂2N)2. Here H (0) is the part of the
Hamiltonian that includes the electron energies in the le
and the dot, as well as the transport of electrons through
contacts. The second term in the Hamiltonian describes
charging energy of the dot that depends on the operatorN̂ of
the total charge in the dot and the dimensionless gate vol
N. We will assume that the termH (0) possesses electron-ho
symmetry. On the other hand, the charging energy term
invariant with respect to the electron-hole transformation
companied by the change of sign of the gate voltage:N
→2N.

These properties of the Hamiltonian enable one to es
lish the symmetry relations for the dependence of the kin
coefficientsG andGT on the gate voltageN. As N is changed
to 2N, the form of the Hamiltonian is preserved if the ele
trons are simultaneously converted to holes. Since the s
of both bias voltageV and the currentI are changed to the
opposite, the conductanceG5]I /]V remains unchanged
This leads to the natural conclusionG(N)5G(2N). On the
other hand, the temperature differenceDT does not depend
on the charge of the current carriers, i.e., the kinetic coe
cient GT5]I /]DT changes sign. Thus we conclude th
GT(N)52GT(2N). Thermopower~8! is also an odd func-
tion of the gate voltage:S(N)52S(2N).

These symmetry properties are only exact as long as
term H (0) possesses electron-hole symmetry. The Hami
nians used in the derivation of our main results for the th
mopower in Sec. IV do satisfy this condition. In experime
tal setups this condition is usually satisfied on
approximately. On the other hand, the asymmetry ofH (0)

develops at the energy scales of the order of the Fermi
ergy EF@EC . Therefore, the above-mentioned symme
properties are valid up to corrections small inEC /EF .

IV. THERMOPOWER IN THE REGIME OF STRONG
INELASTIC COTUNNELING

In this section we calculate the thermopower@Eq. ~8!# of
a SET in which one of the contacts is in the strong tunnel
regime @Fig. 1~b!#. The conductanceG of a SET in the re-
gime of strong inelastic cotunneling was found in Ref. 1
Hence in the following we concentrate on the calculation
the thermoelectric coefficientGT .

A. Tunneling approximation

At low temperatures the energy exchange between
electron and phonon subsystems is weak. In the follow
we neglect the phonons, and the temperatureT refers to the
electrons only.16 We further assume that the conductance
the tunneling junction connecting the dot to the left lead
small compared to that of the other junction,GL!GR . In
this regime the dot is in the thermal equilibrium with th
1-3



e

he
-

gh
th
-

e
ns

er

ea

e
e

s

t i
.
ls
d

ta
k
tio
rg
th

t
n
in
h

at
e

of

f the
ed

be
pe-
r

s
e
of

in-
ht

nc-
n,

an
e-

be-
can

-
left

.
il-
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right lead, and the entire temperature dropDT, which can be
maintained, e.g., by heating the electrons on the left sid
the barrier with an external current,10 occurs at the left con-
tact.

In the weak tunneling limit one can model the SET by t
HamiltonianH5HL1H8, whereHL describes the left con
tact,

HL5(
k

ekak
†ak1(

p
epap

†ap1(
kp

~ tkpak
†ap1tkp* ap

†ak!,

~9!

andH8 accounts for the electron transport through the ri
junction as well as the electron-electron interactions in
system. Hereak andap are the electron annihilation opera
tors in the left lead and in the dot, respectively;ek andep are
the energies of the corresponding states; and the matrix
ments tkp describe the weak tunneling of the electro
through the barrier.

We will account for the tunneling through the left barri
in the lowest~second! order of the perturbation theory intkp .
Let us denote the tunneling density of states in the left l
by n l(e) and that in the dot byn(e). To the lowest order in
the tunneling matrix element the current through the tunn
ing contact can be obtained with the aid of the Fermi gold
rule:

I 522pe^utkpu2&E
2`

`

n l~e!n~e!@nl~e!2n~e!#de.

~10!

Herenl(e) andn(e) denote the Fermi distribution function
at the temperature of the left leadT1DT and the dotT,
respectively. The square of the tunneling matrix elemen
Eq. ~10! is averaged over the states near the Fermi level

To determineGT we assume that the chemical potentia
in the Fermi functions in Eq.~10! are the same and expan
the current to first order inDT:

I 522pen l^utkpu2&
DT

4T2E2`

` en~e!

cosh2S e

2TD de. ~11!

Here we have replaced the density of states in the left con
n l(e) by its valuen l at the Fermi energy using its wea
energy dependence. The corrections to this approxima
are small in the ratio of the temperature to the Fermi ene
We will see below that the density of states in the dot has
energy dependence at the much smaller energy scaleT due to
the electron-electron interactions.

In order to express the thermoelectric coefficientGT in
terms of physically measurable quantities, we use Eq.~10! to
calculate the conductanceGL of the left barrier assuming tha
the electrons in the dot are noninteracting. This conducta
can, in principle, be measured experimentally by open
completely the constriction connecting the dot to the rig
lead. The result is expressed in terms of the density of st
in the dot n0, which is no longer renormalized by th
electron-electron interactions:
04530
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GL52pe2n ln0^utkpu2&. ~12!

Using Eqs.~12! and ~11! we can now expressGT5I /DT as

GT52
GL

4T2en0
E

2`

` en~e!

cosh2S e

2TD de. ~13!

Equation~13! reduces our problem to the calculation
the energy-dependent tunneling density of statesn(e). We
note that unlike the conductanceG of the SET, the thermo-
electric coefficientGT is determined by the odd~in energy!
component of density of statesn(e). Therefore, the ther-
mopower measurements represent an independent test o
theory of Coulomb blockade in nearly open dots develop
in Refs. 13–15.

It is well known that the tunneling density of states can
expressed in terms of the electron Green’s function. A s
cific form of this relation that will be convenient for furthe
calculations is

n~e!52
1

p
cosh

e

2TE2`

`

GS 1

2T
1 i t Dexp~ i et !dt. ~14!

Here G(t)52^TtcL(t)cL
†(0)& is the Matsubara Green’

function;cL is the annihilation operator of an electron in th
dot at the position of the left contact. For the derivation
Eq. ~14!, see Appendix A. Substituting Eq.~14! into Eq.~13!,
we express the thermoelectric coefficientGT in terms of the
Green’s function:

GT5
ipGL

2en0
E

2`

` sinh~pTt!

cosh2~pTt!
GS 1

2T
1 i t Ddt. ~15!

This expression is insensitive to the specific form of the
teractions in the quantum dot and its coupling to the rig
lead. In the following sections we calculate the Green’s fu
tion G(t) in the strong inelastic cotunneling approximatio
and find the corresponding value ofGT .

B. Inelastic cotunneling approximation

At finite temperature in a sufficiently large dot one c
use the approximation of inelastic cotunneling which n
glects the possibility of elastic propagation of electrons
tween the two contacts in the dot. In this case the system
be modeled by the Hamiltonian

H5HL1HR1HC , ~16!

in which the HamiltoniansHL andHR describe the indepen
dent subsystems of electrons propagating through the
and right contacts; in particular,@HL ,HR#50. We have dis-
cussed the form ofHL in Sec. IV A @see Eq.~9!#. For weak
inelastic cotunnelingHR would have a form similar to Eq
~9!. In the case of strong inelastic cotunneling the Ham
tonian HR has a completely different form which will be
discussed in Secs. IV C and IV D. Finally, the termHC de-
1-4
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scribes the Coulomb interactions in the dot. At low energ
the interactions are adequately accounted for by the char
energy approximation

HC5EC~ n̂L1n̂R2N!2. ~17!

Here n̂L and n̂R are the operators of the number of electro
that entered the dot through the left and right contacts,
spectively, andN is a dimensionless parameter which is pr
portional to the gate voltageVg .

By definition of the operatorn̂L its commutation relations
with the fermion operatorcL defined below Eq.~14! have
the form @cL ,n̂L#5cL . For the convenience of the follow
ing calculations we will rewrite charging energy~17! in the
form

HC5EC~ n̂1n̂R2N!2, ~18!

where n̂ is an integer-valued operator that commutes w
cL . In order to preserve the commutation relations betw
cL and HC we replacecL→cLF, whereF is the operator,
lowering n̂ by unity: @F,n̂#5F. It is important to note that
the substitutioncL→cLF does not affect the form of the
HamiltonianHL , and the only modification in the discussio
of Sec. IV A is in the definition of the Green’s function i
Eq. ~14!:

G~t!52^TtcL~t!F~t!F†~0!cL
†~0!&. ~19!

The operatorscL and cL
† now commute withHR1HC ,

whereasF andF† commute withHL . Consequently, Green’
function ~19! factorizes as

G~t!52^TtcL~t!cL
†~0!&^TtF~t!F†~0!&.

In this representation the operatorscL andcL
† describe non-

interacting fermions, whose Green’s function is well know
We can then rewriteG(t) as

G~t!52
n0pT

sin~pTt!
K~t!, ~20!

K~t!5^TtF~t!F†~0!&. ~21!

Substituting Eq.~20! into Eq. ~15!, we express the ther
moelectric coefficientGT of the dot in terms of the correlato
K(t):

GT52
ip2

2

GLT

e E
2`

` sinh~pTt!

cosh3~pTt!
KS 1

2T
1 i t Ddt. ~22!

Unlike Eq. ~15!, formula ~22! assumes that the transpo
through the dot is due to the inelastic cotunneling mec
nism, and that the electron-electron interactions in the sys
are completely described by the charging energy@Eq. ~18!#.
On the other hand, the couplingHR of the dot to the right
lead is still arbitrary. In particular, Eq.~22! is valid in the
case of a metallic grain coupled to the lead by a wide con
supporting many channels.
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In this paper we consider the case of a single-chan
contact, which is usually realized in semiconductor devic
Depending on the presence of a magnetic field polarizing
spins of the electrons, one has to consider the cases of e
spinless or spin-12 electrons.

C. Spinless electrons

We start with the simpler case of spinless electrons. F
lowing Refs. 13 and 14 we describe the electron transp
through the right quantum point contact by a model of on
dimensional fermions. In the case of strong coupling of
dot to the right lead, the charging energy@Eq. ~18!# gives rise
to nontrivial Coulomb correlations of the motion of electro
through the constriction. It is more convenient to treat t
problems of interacting one-dimensional electrons in
bosonized representation. Then the Hamiltonian13,14 of the
right constriction takes the formHR5HR

(0)1HR8 , where

HR
(0)5

vF

2pE2`

`

$p2P2~x!1@]xf~x!#2%dx, ~23a!

HR852
D

p
ur ucos@2f~0!#. ~23b!

Heref andP are bosonic fields satisfying the commutatio
relations@f(x),P(y)#5 id(x2y), the parametervF is the
Fermi velocity of the electrons,r is the reflection amplitude
in the constriction, andD is the bandwidth. The regionsx
,0 andx.0 in the integral of Eq.~23a! represent the elec
trons in the dot and in the right lead, respectively. The
viation of the density of one-dimensional electrons from
ground-state value is given by]xf(x)/p. Thus the number
of electrons that have entered the dot through the right c
striction isnR5f(0)/p, and the charging energy@Eq. ~18!#
takes the form

HC5ECF n̂1
1

p
f~0!2NG2

. ~23c!

The advantage of the bosonization approach is that Coulo
interaction term~23c! is quadratic in the bosonic operatorf,
and, therefore, can be treated exactly. On the other hand
backscattering of electrons in the constriction in t
bosonized representation takes a strongly nonlinear f
@Eq. ~23b!#. As a result the backscattering can only be a
counted for perturbatively, using the small parameterur u,1.

We will calculate the time-ordered correlatorK(t) de-
fined by Eq.~21! as an imaginary-time functional integra
over the bosonic fieldf. The operatorF†(0) increasesn
from 0 to 1 at timet50, whereasF(t) changes it back to
n50 at time t5t. Therefore,F(0)F†(0) in the functional
integral can be omitted provided that the operatorn̂ in the
action is replaced by

nt~ t !5u~ t !u~t2t !. ~24!

Hereu(t) is the unit step function. Upon this procedure t
correlatorK(t) is expressed as
1-5
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K~t!5
Z~t!

Z~0!
, ~25!

whereZ(t) is the functional integral given by

Z~t!5E exp@2S02SC~t!2S8#Df~x,t !. ~26!

Here S0 denotes the part of the Eucledian action deriv
from Hamiltonian~23a! of free electrons moving through th
constriction in the absence of both interactions and ba
scattering:

S05E
0

b

dtE dx
vF

2p F ~] tf!2

vF
2

1~]xf!2G . ~27a!

Hereb51/T. The termSC(t) is the part of the action which
is due to charging energy~23c!, where the operatorn̂ is
replaced with Eq.~24!:

SC~t!5E
0

b

ECFnt~ t !1
1

p
f~0,t !2NG2

dt. ~27b!

Finally, S8 is the small contribution to the action due
backscattering~23b!:

S852E
0

bD

p
ur ucos@2f~0,t !#dt. ~27c!

The following calculations are performed in the regime
low temperatures,T!EC . At r 50 functional integral~26! is
Gaussian, and its explicit evaluation gives

K0~t!5S p2T

gEC
D 2 1

sin2~pTt!
; ~28!

see Appendix B. Hereg5eC, where C'0.577 is Euler’s
constant. One can easily see that the substitution of Eq.~28!
into expression~22! results inGT50.

The vanishing of the thermoelectric coefficient in the a
sence of backscattering is a consequence of the fact th
r 50 the physical properties of the system do not depend
the gate voltage;13,17 in particular, GT(N)5const. Taking
into account thatGT(N)52GT(2N) ~see Sec. III!, we ob-
tain GT50. The backscattering restores the sensitivity to
gate voltage13,17 and gives rise to a nonvanishing the
mopower of the device.

To account for the small backscattering atur u!1 we ex-
pand the action in Eqs.~25! and~26! to first order inS8 and
find

K~t!5K0~t!~12^S8&t1^S8&0!. ~29!

Here ^S8&t is defined as

^S8&t5

E S8exp@2S02SC~t!#Df

E exp@2S02SC~t!#Df

. ~30!
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Due to the form@Eq. ~27c!# of the perturbationS8 the
evaluation of K(t) in Eq. ~29! again amounts to taking
Gaussian functional integrals. The straightforward b
lengthy calculations carried out in Appendix B give the res

K~t!5K0~t!F122gjur ucos~2pN!

14p2jgur u
T

EC
sin~2pN!cot~pTt!G . ~31!

Herej'1.59 is a constant defined by Eq.~B11!. The substi-
tution of this result into Eq.~22! gives the following result
for the thermoelectric coefficient in the first order inur u:

GT52
8p7jGL

15ge S T

EC
D 3

ur usin~2pN!. ~32!

The thermoelectric coefficientGT given by Eq.~32! is an
odd function of the gate voltageN, in agreement with the
symmetry properties of the kinetic coefficients discussed
Sec. III. More formally, in the context of the present calc
lation the symmetryGT(N)52GT(2N) can be obtained as
follows. One can see from the form of functional integr
~26! and action~27! that correlator~25! has the following
property: K(b2t,N)5K(t,12N). Furthermore, all the
physical properties of the system are periodic inN with pe-
riod 1. This can be shown by shiftingf→f1pN which
removesN from SC(t) and changes the cosine in Eq.~27c!
to cos@2f(0,t)12pN#. The action then becomes invaria
with respect to the shiftN→N11. Consequently correlato
~25! has the propertyK(b2t,N)5K(t,2N). One can eas-
ily see from Eq.~22! that only the part ofK(t) which is odd
with respect tot→b2t contributes to the thermoelectri
coefficient GT . Using the aforementioned properties
K(t,N), this odd part can be presented as

Koddu~t!5
1

2
@K~t,N!2K~b2t,N!#

5
1

2
@K~t,N!2K~t,2N!#. ~33!

Therefore, the thermoelectric coefficientGT is an odd func-
tion of N.

The conductanceG can be obtained by substitution o
correlator~31! analytically continued to real time into Eq
~52! of Ref. 14. The result has the form

G5GL

2p4T2

3g2EC
2 @122gjur ucos~2pN!#. ~34!

This expression is in agreement with formula~A27! of Ref.
14, where the numerical prefactor in the brackets was
determined, and with the expression~34! of Ref. 18, where
the constantj was found.

Substituting Eq.~32! into Eq. ~8! and using the leading
term in Eq.~34! for the conductance, we obtain the followin
expression for the thermopower in the spinless case:
1-6
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S52
4p3jgT

5eEC
ur usin~2pN!. ~35!

It is instructive to compare this result with thermopow
~6! in the regime of weak inelastic cotunneling. Both expre
sions vanish linearly atT→0, but unlike Eq.~6!, our result
~35! depends on the transmission coefficient of the barr
As expected, at perfect transmissionr→0 the Coulomb
blockade oscillations of the thermopower disappear.

D. Electrons with spin

Although the spins of electrons can be polarized in
experiment by applying a strong magnetic field, the m
common situation is when no field is applied. In this regim
one has to consider the case of spin-1

2 electrons.
In the presence of electron spins the Hamiltonian~23a!–

~23c! has to be modified to account for the two species
electrons: spin-↑ and spin-↓. Each of the spin subsystem
can be bosonized independently, and the Hamiltonian ta
the form13

HR
(0)5

vF

2p (
s5↑,↓

E
2`

`

$p2Ps
2~x!1@]xfs~x!#2%dx,

~36a!

HR852
D

p
ur u$cos@2f↑~0!#1cos@2f↓~0!#%, ~36b!

HC5ECH n̂1
1

p
@f↑~0!1f↓~0!#2NJ 2

. ~36c!

To find the thermoelectric coefficient@Eq. ~22!# one has to
find the correlatorK(t). Similarly to the case of spinles
electrons,K(t) can be expressed in terms of the imagina
time functional integral@Eq. ~25!#, where

Z~t!5E exp@2S02SC~t!2S8#DfcDfs . ~37!

Here we have introduced the charge and spin fie
fc,s(x,t)5@f↑(x,t)6f↓(x,t)#/A2. The action in Eq.~37! is
expressed in terms of these variables as

S05 (
a5c,s

E
0

b

dtE dx
vF

2p F ~] tfa!2

vF
2

1~]xfa!2G ,

~38a!

SC~t!5E
0

b

dtECFnt~ t !1
A2

p
fc~0,t !2NG2

, ~38b!

S852E
0

b

dt
2D

p
ur ucos@A2fc~0,t !#cos@A2fs~0,t !#.

~38c!

Similar to the case of spinless electrons, in the absenc
backscattering in the constriction the calculation ofK(t) re-
duces to evaluation of a Gaussian functional integral@Eq.
~37!#. Clearly, atr 50 the integral overfs is unaffected by
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nt(t); therefore the integrals over the spin degrees of fr
dom in the numerator and denominator of Eq.~25! cancel.
One can easily see that action~38a! and ~38b! of the charge
mode is identical to that of the spinless problems~27a! and
~27b! upon the substitutionEC→2EC , nt(t)→nt(t)/A2,
and N→N/A2. Making the respective modifications to th
derivation ofK0(t) in Appendix B, we find

Kc~t!5
p2T

2gEC

1

usin~pTt!u
. ~39!

Substituting the analytic continuation of this result tot
51/2T1 i t into Eq.~22!, we findGT50. As it was explained
in Sec. IV C, this is a consequence of the fact that the sys
possesses electron-hole symmetry atr 50.

The rest of this section is organized as follows. In S
IV D 1 we calculate the thermopower within the secon
order perturbation theory in the reflection amplituder. We
show that the perturbative result diverges at low tempe
tures. We then find the thermopower at arbitrarily low te
peratures in Sec. IV D 2 using a nonperturbative approac

1. Perturbation theory

At nonvanishing backscattering the correction toKc(t)
appears in second order inr. Indeed, the first-order correc
tion can be expressed in the form of Eq.~29!. It is easy to
check that unlike the case of spinless electrons, the ave
^S8& vanishes, because the fluctuations of the spin m
fs(0,t) are not suppressed at low frequencies by the cha
ing energy term@Eq. ~38b!#. Expanding Eqs.~25! and~37! to
second order inr, we find

K~t!5Kc~t!F11
1

2
~^S 82&t2^S 82&0!G . ~40!

Similarly to Eq.~30!, the averaginĝ•••&t here is performed
with the actionS01SC(t) given by Eqs.~38a! and ~38b!.
Using the explicit form@Eq. ~38c!# of S8, we obtain

^S 82&t5
4D2ur u2

p2 E
0

bE
0

b

kc~ t,t8;t!ks~ t,t8!dt dt8, ~41!

where we have introduced the correlators

kc~ t,t8;t!5^cos@A2fc~0,t !#cos@A2fc~0,t8!#&t ,
~42a!

ks~ t,t8!5^cos@A2fs~0,t !#cos@A2fs~0,t8!#&0 . ~42b!

The spin fluctuations are completely decoupled from cha
ing action~38b!, rendering the correlatorks independent of
t. The calculation of the correlatorskc and ks reduces to
evaluation of Gaussian integrals. In Appendix C we find

kc~ t,t8;t!5
gEC

pD
Re~e2ipNe2 i [xt(t)1xt(t8)]

1e2 i [xt(t)2xt(t8)] !, ~43!
1-7
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ks~ t,t8!5
pT

2D

1

usin@pT~ t2t8!#u
, ~44!

where we have introduced the notations

xt~ t !5pnt~ t !1dxt~ t !, ~45a!

dxt~ t !5 (
n51

`
sin@2pT~ t2t!n#2sin@2pTtn#

n1
EC

p2T

. ~45b!

In Eq. ~43! we have assumedut2t8u@EC
21 ; we will see that

this region gives the leading contribution to integral~41!.
As discussed in Sec. IV C, only the odd inN part @Eq.

~33!# of the correlatorK(t) contributes to thermoelectric co
efficient ~22!. Keeping only the odd part of Eq.~43!, from
Eq. ~40! in the second order inr we find

Kodd~t!5Kc~t!
2gECT

p2
ur u2sin~2pN!I~t!, ~46!

I~t!5E
0

b

dt sinxt~ t !E
0

b cosxt~ t8!

usin@pT~ t2t8!#u
dt8. ~47!

In evaluating the integralI(t) one should keep in mind tha
the denominator in Eq.~47! is written for ut2t8u@EC

21 .
Thus the logarithmic divergence att5t8 should be cut off at
ut2t8u;EC

21 .
To evaluate the integralI(t) we first notice that away

from the pointst50,t,b the correctiondxt(t) in Eq. ~45! is
small in T/EC ;

dxt~ t !.
p2T

2EC
$cot@pT~ t2t!#2cot@pTt#%. ~48!

One can neglect this correction in the argument of the co
in Eq. ~47! and replace cosxt(t8)5sgn(t82t). Then the in-
tegral overt8 can be evaluated with logarithmic accuracy

I~t!.
2

pTE0

b

dt sinxt~ t !F2 ln tan
pTt

2

1sgn~ t2t!lnS EC

T
tan

pTut2tu
2 D G .

To leading order in T/EC one can replace sinxt(t)
5dxt(t)sgn(t2t). Using approximation~48! we then obtain,
with logarithmic accuracy,

Kodd~t!52Kc~t!
8g

p2
ur u2sin~2pN!ln

EC

T
ln tan

pTt

2
.

~49!

Substituting this result forK(t) into Eq. ~22!, we find

GT52
8p

9

GL

e

T

EC
ln

EC

T
ur u2sin~2pN!. ~50!
04530
e

The second-order perturbation theory result for the th
mopower can be found from Eq.~8! using the resultG
5GL(p3T/8gEC) of Ref. 14 for the conductance of the de
vice at r 50:

S52
64g

9p2

1

e
ln

EC

T
ur u2sin~2pN!. ~51!

This result applies atT!EC and, similarly to the spinless
case@Eq. ~35!#, the thermopower vanishes atr→0. It is im-
portant to note that unlike the spinless case@Eq. ~35!#, the
thermopower@Eq. ~51!# diverges atT→0. This means, in
particular, that the perturbation theory leading to Eq.~51!
fails at sufficiently low temperatures. In Sec. IV D 2 we pe
form a nonperturbative calculation and establish the true
havior of the thermopower atT→0.18

2. Nonperturbative treatment

The logarithmic growth of the thermopower@Eq. ~51!# at
low temperature indicates that the thermoelectric proper
of the system are controlled by spin and charge fluctuati
at frequencies belowEC . In this section we construct a
theory that describes the low-energy properties of the sys
exactly, and enables us to obtain a nonperturbative exp
sion for the thermopower at arbitrarily low temperature
This derivation was outlined in Ref. 19.

As we already discussed, atr 50 the contributions of the
spin fluctuations to the functional integrals in the numera
and the denominator of Eq.~25! cancel each other, and th
ratio of the functional integrals over the charge degrees
freedom is equal to the correlatorKc(t) @Eq. ~39!#. The ef-
fect of small but finiter on the charge modes is negligible
because their fluctuations at low energies are suppresse
the charging energy. However, even a small backscatterir
pins the fluctuations of the spin modes and changes t
low-frequency dynamics dramatically.14 Therefore, one can
account for the small backscattering by presenting correl
~25! in the form

K~t!5Kc~t!Ks~t!, Ks~t!5
Zs~t!

Zs~0!
, ~52!

where Zs(t) is the functional integral over the slow spi
modes, averaged over the fast charge modes.

The calculation ofZs(t) amounts to integrating out th
fast charge degrees of freedom in functional integral~37!.
Since the spin and charge fluctuations are only coupled
backscattering term~38c!, this procedure reduces to the a
eraging of cos@A2fc(0,t)# with the Gaussian actionS0
1SC(t). Indeed, one can rewrite Eqs.~42a! and ~43! as

^cos@A2fc~0,t !#cos@A2fc~0,t8!#&t5Yt~ t !Yt~ t8!,
~53!

Yt~ t !5A2gEC

pD
cos@xt~ t !2pN#. ~54!

One can see from Eq.~53! that at ut2t8u@EC
21 correlator

~42a! factorizes into the product of the averages of the
1-8
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sines, and that̂cos@A2fc(0,t)#&t5Yt(t). It is clear that the
higher-point correlators will also factorize into the product
averages. One can therefore simply replace
cos@A2fc(0,t)# in action ~38c! by Yt(t), and obtain the ef-
fective action for the spin degrees of freedom in the form

St5E
0

b

dtE dx
vF

2p F ~] tfs!
2

vF
2

1~]xfs!
2G

2E
0

bA4D

vF
lt~ t !cos@A2fs~0,t !#dt, ~55!

where we have introduced the notations

lt~ t !5Lcos@xt~ t !2pN#5L~21!nt(t)cos@dxt~ t !2pN#,
~56!

L5A2gvFEC

p3
ur u. ~57!

The procedure leading to action~55! implied that all the
relevant time scales of the problem are longer thanEC

21 .
Therefore, one has to integrate out the fluctuations of
spin degrees of freedom with frequencies exceedingEC .
This procedure is straightforward and amounts to replac
D with the new bandwidth;EC . Thus Eq.~55! gives the
effective action of the problem, provided the bandwidthD
;EC .

One can now find the correlatorK(t) using Eq. ~52!
where the functional integralZs(t) is defined asZs(t)
5*e2StDfs . For the subsequent calculations it will be co
venient to use the Hamiltonian formulation of the proble
and expressZs(t) as the trace of the time-ordered expone
tial

Zs~t!5TrH TtexpF2E
0

b

Ht~ t !dtG J , ~58!

where the time dependent HamiltonianHt is given by

Ht~ t !5
vF

2pE2`

`

$p2Ps
2~x!1@]xfs~x!#2%dx

2A4D

vF
lt~ t !cos@A2fs~0!#. ~59!

The small parameter of the problemr enters through
lt(t). In order to evaluateK(t) in all orders inlt we refer-
mionize Hamiltonian~59! following Ref. 13, and find

Ht~ t !5E
2`

`

@jkck
†ck2lt~ t !~c1c†!~ck2ck

†!#dk. ~60!

Here jk5vFk; the operatorsck
† and ck satisfying the anti-

commutation relations$ck ,ck8
† %5d(k2k8) create and de-

stroy chiral fermions. Finally,c is a fermion annihilation op-
erator anticommuting withck andck

† .
Although Hamiltonian~60! is quadratic in the fermion

operators, the time dependence oflt(t) makes the evalua
04530
f
e

e

g

-

tion of trace~58! nontrivial. It is clear from Eq.~45b! that at
T/EC!1 the main time dependence is due to the fac
(21)nt(t) in the definition of lt(t) @Eq. ~56!#. One can
greatly simplify the calculation by eliminating this time de
pendence with the following trick. Note that the unita
transformation with the operator

U5~21!c†c5~c2c†!~c1c†! ~61!

changes the sign oflt in Hamiltonian ~60!. Therefore the
factor (21)nt(t) can be accounted for by adding operato
U(t) andU(0) to trace~58!,

Zs~t!5TrH TtexpF2E
0

b

@H01Ht8~ t !#dtGU~t!U~0!J .

~62!

Here H01Ht8(t) is obtained from the Hamiltonian~60! by
replacinglt(t)→lt(t)/(21)nt(t). Its time-independent par
H0 is given by Eq.~60! at t50, and the correction is

Ht8~ t !5L$cos~pN!2cos@dxt~ t !2pN#%~c1c†!C,
~63!

C5E
2`

`

~ck2ck
†!dk. ~64!

The perturbationHt8(t) vanishes atT/EC→0. In this limit
the spin contribution to correlator~52! becomes the Green’
function of operatorsU,

Ks
(0)~t!5^TtU~t!U~0!&0 , ~65!

where ^•••&0 denotes an averaging over the equilibriu
thermal distribution with the HamiltonianH0. The explicit
analytic result for this quantity is given by formula~66! of
Ref. 14. The result is an even function of the gate voltageN,
and therefore within the approximationHt8(t)50 the ther-
moelectric coefficientGT vanishes.

To find the leading contribution toGT at smallT/EC we
expand Eq.~62! to first order of the perturbation theory i
Ht8(t). The correction toKs(t) has the form

Ks
(1)~t!52E

0

b

dt ^TtHt8~ t !U~t!U~0!&0 . ~66!

This correction is evaluated with logarithmic accuracy in A
pendix C 2:

Ks
(1)~t!52

8g

p2
ur u2sin~2pN!ln

EC

T1G E
2`

` jdj

j21G2

ejt

ebj11
,

~67!

G5
8gEC

p2
ur u2cos2~pN!. ~68!

It is important to note that although this result is the fir
order correction inHt8(t), it is non-perturbative in the reflec
tion amplituder.
1-9
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Substituting the correlatorK(t) in the form of Eq.~52!,
with Kc andKs given by Eqs.~39! and~67! into the expres-
sion for thermoelectric coefficient~22!, we obtain

GT52
1

6p

GL

e

T

EC
ln

EC

T1G
ur u2sin~2pN!

3E
2`

` x2~x21p2!dx

@x21~G/T!2#cosh2~x/2!
. ~69!

At temperaturesT@G this expression reproduces the pertu
bative result@Eq. ~50!#. The latter is valid untilT;G, and at
T!G the thermoelectric coefficientGT becomes

GT52
p7

60g2

GL

e

T3

EC
3

1

ur u2

sin~pN!

cos3~pN!
ln

1

ur u2cos2~pN!
.

~70!

The dependence ofGT on the small reflection amplitude il
lustrates the nonperturbative nature of this result. It is a
worth noting that at low temperatures the dependence ofGT
on the gate voltageN is strongly nonsinusoidal.

To find the thermopowerS5GT /G one can use expres
sion ~69! and the nonperturbative result of Ref. 14 for t
conductanceG of the SET:

G5
GLG

8gEC
E

2`

` ~x21p2!dx

@x21~G/T!2#cosh2~x/2!
. ~71!

At relatively high temperaturesT@G the thermopowerS
5GT /G obtained from Eqs.~69! and~71! coincides with the
perturbative expression@Eq. ~51!#. In the more interesting
case of low temperaturesT!G, we find

S52
p3

5

1

e

T

EC
tan~pN!ln

1

ur u2cos2~pN!
. ~72!

The new energy scaleG arising from the nonperturbativ
solution is always small compared to the charging ener
see Eq.~68!. It is important to keep in mind thatG is a
function of the gate voltage, and vanishes near the Coulo
blockade peaks,N56 1

2 ,6 3
2 ,6 5

2 , . . . . As aresult, even at
T!ECur u2 perturbative results~50! and ~51! are still valid
near the conductance peaks, whereas in the valleys as
totics ~70! and ~72! apply. The crossover between these
ymptotics occurs at the values ofN whereG5T, i.e., accord-
ing to Eq.~68! at a distancedN;AT/ECur u2 from the centers
of the conductance peaks. At these points the thermopo
reaches its maximum absolute valueSmax, which can be es-
timated by substitutingN5 1

2 1dN in either Eq.~51! or ~72!,
resulting in

Smax;e21ur uA T

EC
ln

EC

T
. ~73!

The exact shape of the Coulomb blockade oscillations of
thermopower found from Eqs.~69! and ~71! is illustrated in
Fig. 2.
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V. SUMMARY AND DISCUSSION

We presented a theory of the thermopower of sing
electron transistors in the regime when the coupling of
quantum dot to one of the leads is strong. The theory
applicable to devices with relatively large dots, where t
effects of finite quantum level spacing can be neglected,
the main transport mechanism is inelastic cotunneling. Us
the fact that the coupling to one of the two leads is weak,
obtained expression~22! for the thermoelectric coefficien
GT in terms of the correlatorK(t) describing the charging o
the dot strongly coupled to the other lead. General exp
sion ~22! is applicable to contacts with arbitrary couplin
We applied it to the case of coupling via a quantum po
contact with a single transverse mode and almost per
transmission,ur u!1. In the case of spin-polarized electron
we found sinusoidal Coulomb blockade oscillations of t
thermopower with the amplitude;e21ur uT/EC @Eq. ~35!#.
Experimentally the polarization of electron spins can
achieved by applying a strong magnetic field. In the abse
of the magnetic field the thermopower is given by the ratio
nonperturbative expressions~69! and~71!. At relatively high
temperaturesT@ECur u2 the Coulomb blockade oscillation
of S are sinusoidal, with the amplitude;e21ur u2ln(EC /T)
@Eq. ~51#. At lower temperaturesT!ECur u2 the oscillations
are non-sinusoidal, Fig. 2, and their amplitude is given
Eq. ~73!.

In several experiments8–10 the thermopower of a SET ha
been measured as a function of the gate voltage. The ex
ments of Refs. 8 and 9 were performed in the regime of w
tunneling. The experimental results are in good agreem
with the theories of the thermopower of a SET in the regim
of sequential tunneling7 and weak inelastic cotunneling.11

These experiments established the applicability of the
proach to the thermopower based on the models of elec
transport similar to the ones used in this paper. In particu
there is no experimental indication that other transp

FIG. 2. Thermopower of the SET as a function of the ga
voltage at different temperatures. The curves forS5GT /G are ob-
tained numerically from Eqs.~69! and ~71! at ur u250.1 andT/EC

50.3, 0.125, 0.025, 0.005, and 0.001. As the temperature is l
ered, the amplitude of the thermopower oscillations first grows
cording to Eq.~51! and then decreases in agreement with Eq.~73!.
Below the crossover temperature;ECur u2 the shape of the oscilla
tions becomes nonsinusoidal.
1-10
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mechanisms, such as phonon drag, contribute significant
the observed thermopower.

We are aware of only one experiment on the thermopo
of SET in the strong coupling regime~Ref. 10!. In this ex-
periment the Coulomb blockade oscillations of the th
mopowerS(N) were measured at different values of the
flection coefficient. Only one published curveS(N),
measured atur u250.260.1, approached the strong tunnelin
limit ur u!1. In this case the thermopower remained sin
soidal even at the lowest available temperatures. To obs
the more interesting non-sinusoidal behavior ofS(N) one
would have to measure the thermopower at lower temp
ture to reach the regimeT!ECur u2. This may require making
a sample with a larger quantum dot to ensure that the low
temperature is still large compared to the quantum le
spacing.
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APPENDIX A: TUNNELING DENSITY OF STATES

In this appendix we present the derivation of Eq.~14! for
the tunneling density of statesn(e). We start with the stan-
dard expression for the density of states

n~e!5
i

2p
@GR~e!2GA~e!#, ~A1!

where GR and GA are the retarded and advanced Gree
functions, which can be obtained by the analytic continuat
of the Matsubara Green’s functionG(en).

FIG. 3. Representation of the deformation of thet-integration
contour in Eq.~A2!. For positiveen the contour should be distorte
into the upper half-plane, and for negativeen into the lower half-
plane.
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In the frequency representation the Matsubara Gree
function can be written as

G~en!5E
0

b

dt exp~ i ent!G~t!, ~A2!

whereen5pT(2n11) are the fermionic Matsubara freque
cies. Depending on the sign ofen the t integration contour
can be distorted to the upper or lower half plane as show
Fig. 3.

Keeping in mind that the retarded Green’s functi
GR( i en)5G(en) at en.0, and using the fact that for th
fermionic Matsubara frequencies exp(ienb)521, we can
then express the retarded Green function as

GR~ i en!5 i E
0

`

dt exp~2ent !@G~ i t 10!1G~b201 i t !#.

~A3!

The analytic continuation to real frequencies can now
performed in the last line of Eq.~A3! through the substitu-
tion en→2 i e.

We then obtain a similar expression for the advanc
Green’s functionGA(e) using the relationGA( i en)5G(en)
at en,0. Combining the two results, we find the followin
expression for density of states~A1!:

n~e!52
1

2pE2`

`

dt exp~ i et !G~ i t 10!

2
1

2pE2`

`

dt exp~ i et !G~b201 i t !. ~A4!

Since the Green’s functionG(t) is analytic everywhere ex
cept on the lines Ret50,6b,62b, . . . , we canshift the
integration contour in the first line of Eq.~A4! by t→t
2 ib/2 and in the second one byt→t1 ib/2. As a result we
obtain Eq.~14!.

APPENDIX B: K„t… FOR SPINLESS ELECTRONS

In this appendix we derive results~28! and ~31! for the
correlatorK(t) in the spinless case.

1. Evaluation of K0„t… †Eq. „28…‡

To derive Eq.~28! we evaluate Gaussian integral~26!
under the assumptionS850. First, we find ft(x,t) that
minimizes the actionS01SC(t). Differentiating Eqs.~27a!
and ~27b! with respect tof(x,t), we find

] t
2ft1vF

2]x
2ft22vFECFnt~ t !1

1

p
ft2NGd~x!50.

The solution of this equation has the form
1-11
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ft~x,t !5pN2T(
vn

ECexpS 2
uvnxu

vF
D

uvnu1
EC

p

nt~vn!e2 ivnt,

~B1!

where vn52pnT are bosonic Matsubara frequencies, a
nt(vn) is the Fourier transform ofnt(t) @Eq. ~24!#:

nt~vn!5
eivnt21

ivn
. ~B2!

In the calculation of the correlatorK0(t) the integrals
over the fluctuations of the fieldf(x,t) about the saddle
pointsft(x,t) andf0(x,t) in the numerator and the denom
nator of Eq.~25! cancel each other. ThusK0(t) is given by
the ratio of the saddle-point values of the respective in
grals. Substituting Eq.~B1! into Eqs. ~27a! and ~27b!, we
find the saddle point action in the form

@S01SC~t!#f5ft(x,t)5
EC

p2T
(
n51

`
12cos~2pTtn!

nS n1
EC

2p2T
D .

~B3!

In the denominator of Eq.~25! we have the saddle poin
action at t50; according to Eq.~B3! it vanishes. In the
numerator of Eq.~25! the time t is finite. Assumingt
@EC

21 andT!EC , we find

2@S01SC~t!#f5ft(x,t).2 ln
p2T

gECusin~pTt!u
. ~B4!

The correlatorK0(t) is now found by exponentiation of Eq
~B4!. The result is given by Eq.~28!.

2. Evaluation of K„t… to first order in r †Eq. „31…‡

To derive the first-order correction@Eq. ~31!# to the cor-
relator K0(t) one has to evaluate the Gaussian functio
integral @Eq. ~30!#. It is convenient to integrate with respe
to fluctuations w5f2ft of the field f(x,t) about the
saddle pointft(x,t). Then integral~30! takes the form

^S8&t5ReE
0

b

dt e2ift(0,t)F2
D

p
ur u^e2iw(0,t)&G , ~B5!

where the averaginĝ•••& is performed over the fluctuation
around the saddle pointft . This averaging can be viewed a
integral ~30! with nt andN in the charging actionSC set to
zero. The evaluation of this integral is straightforward, b
lengthy. It can be avoided by noticing that the expression
the square brackets in Eq.~B5! is time independent and ha
the meaning of the first-order correction to the ground s
energy of the Hamiltonian~23a!–~23c! at n̂5N50. Substi-
tuting its value found in Ref. 13, we obtain

^S8&t52
g

p2
ur uECReE

0

b

dte2ift(0,t). ~B6!
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Using Eqs.~B1! and ~B2! we now find

^S8&t2^S8&052
g

p2
ur uEC Ree2ipN

3E
0

b

dt ~ei [F(t)2F(t2t)]21!, ~B7!

where

F~ t !52(
n51

`
sin~2pTtn!

n1
EC

2p2T

. ~B8!

At T!EC the series can be evaluated explicitly for arbitra
t,

F~ t !5H 2p2T

EC
cot~pTt!, t@EC

21 ,

2E
0

`

dy
sin~ECty/p!

11y
, t!T21.

~B9!

In order to find thermoelectric coefficient~22! we need to
find K(t) at t;T21@EC

21 . At these time scales the detai
of the short-time behavior ofeiF (t) are irrelevant, and one
can replace

eiF (t)→12
p2j

EC
d~ t !1 i sinF~ t !, ~B10!

where the constantj'1.59 is defined as

j5
2

pE0

`

dxF12cosS 2E
0

`

dy
sin~xy!

11y D G . ~B11!

Substituting approximation~B10! into the integral in Eq.
~B7! and using Eq.~B9!, we find

^S8&t2^S8&052gjur uFcos~2pN!

2
2p2T

EC
sin~2pN!cot~pTt!G . ~B12!

The calculation of the conductanceG and the thermoelectric
coefficientGT requires the knowledge of the even and odd
t components ofK(t), respectively. In Eq.~B12! we re-
tained only the leading-order terms inT/EC for each of these
components. Substituting Eq.~B12! into Eq. ~29!, we arrive
at Eq.~31!.

APPENDIX C: K„t… FOR ELECTRONS WITH SPIN

1. Evaluation of kc„t,t8; t… and ks„t,t8… †Eq. „42…‡

The correlatorkc(t,t8;t) defined by Eq.~42a! can be pre-
sented in the form

kc~ t,t8;t!5
1

2
Re@kc

1~ t,t8;t!1kc
2~ t,t8;t!#, ~C1!
1-12
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where

kc
6~ t,t8;t!5^eiA2[fc(0,t)6fc(0,t8)]&t . ~C2!

The calculation of the correlatorskt
6 amounts to an evalua

tion of Gaussian integrals. Similarly to the calculations
Appendix B 2, it is convenient to integrate over the fluctu
tions wc about the saddle point

fc,t~0,t !5
pN

A2
2T(

vn

A2EC

uvnu1
2EC

p

nt~vn!e2 ivnt,

~C3!

where n(vn) is given by Eq.~B2!. The saddle point@Eq.
~C3!# is easily obtained from Eq.~B1! by replacing EC

→2EC , nt(t)→nt(t)/A2, and N→N/A2. Substituting
fc(0,t)5fc,t(0,t)1w(t) into Eq. ~C2!, we find

kc
6~ t,t8;t!5exp$ iA2@fc,t~0,t !6fc,t~0,t8!#%

3 exp$22^wc~ t !@wc~ t !6wc~ t8!#&%.

~C4!

To evaluate the last factor in Eq.~C4! we introduce the gen
erating functional

W@$J~vn!%#5K expF2T(
vn

J~vn!wc~2vn!G L . ~C5!

This Gaussian integral is completely determined by
saddle point valuewc

J(t) of the fieldwc :

W@$J~vn!%#5expF2
1

2
T(

vn

J~vn!wc
J~2vn!G .

Next we note that fluctuations ofwc(t) coincide with those
of fc(0,t) at N5nt50. Thennt(t) in Eq. ~38b! plays the
role of a source term similar toJ(t). More precisely, they are
related according toJ(t)5(2A2EC /p)nt(t). Then the
saddle pointwc

J(t) can be determined from~C3! at N50 and
nt(vn)5(p/2A2EC)J(vn), and we obtain

W@$J~vn!%#5expFp

4
T(

vn

J~vn!J~2vn!

uvnu1
2EC

p
G . ~C6!

Differentiating the functionalW with respect toJ(vn) and
J(2vm), from Eqs.~C5! and ~C6!, we find

^wc~2vn!wc~vm!&5
p

2T

1

uvnu1
2EC

p

dn,m . ~C7!

In the time representation this result takes the form

^wc~ t !wc~ t8!&5
p

2
T(

vn

eivn(t2t8)

uvnu1
2EC

p

e2uvnu/D. ~C8!
04530
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The asymptotic behavior of this correlator is

^wc~ t !wc~ t8!&

55
1

2
ln

pD

2gECA11@D~ t2t8!#2
, ut2t8u!

1

EC

p4T2

8EC
2 sin2pT~ t2t8!

, ut2t8u@
1

EC
.

~C9!

Substituting Eqs.~C3!, ~C4!, and~C9!, into Eq.~C1! we find
the correlatorkc(t,t8;t) at ut2t8u@EC

21 in the form of Eq.
~43!, where

xt~ t !5
EC

2p2T
(

n52`

`
e2 i2pT(t2t)n2e2 i2pTtn

inS unu1
EC

p2T
D .

This definition ofxt(t) can be rewritten in the form of Eq
~45!.

Our derivation ofkc(t,t8;t) allows one to findks(t,t8) as
well. Indeed, atEC→0 the actions of the charge and sp
modes are identical. Taking the limitEC→0 in Eqs.~C3! and
~C8!, from Eqs.~C4! and~C1! we find the correlatorks(t,t8)
at ut2t8u@D21 in the form of Eq.~44!.

2. Evaluation of the correlator Ks
„1…

„t… †Eq. „67…‡

In this Appendix we outline the derivation of the co
relator ~67! starting from Eq.~66!. At small temperatureT
!EC one can expand expression~63! for Ht8(t) to first order
in dxt and present Eq.~66! in the form

Ks
(1)~t!5L sin~pN!E

0

b

dxt~ t !F~t,t !dt, ~C10!

F~t,t !5^Tt~c1c†! tC~ t !U~t!U~0!&0 . ~C11!

Here we introduced the shorthand notation (c1c†) t[c(t)
1c†(t). To evaluateF(t,t) we substitute expression~61!
for U. Since the operator (c2c†) commutes with the Hamil-
tonian H0, the Green’s function^Tt(c2c†)t(c2c†)0&0
521, and we find

F~t,t !5^Tt~c1c†! tC~ t !~c1c†!t~c1c†!0&0 .
~C12!

Considering that the HamiltonianH0 is quadratic in fermion
operators, one can use Wick’s theorem and presentF(t,t) in
terms of single-particle Green’s functions:

F~t,t !5G1~t!G2~0!1G1~ t2t!G2~2t !2G1~ t !G2~t2t !.
~C13!

HereG1(t) andG2(t) are defined as

G1~ t !5^Tt~c1c†! t~c1c†!0&0 , ~C14a!

G2~ t !5^Tt~c1c†! tC~0!&0 . ~C14b!
1-13
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Evaluation of Green’s functions~C14! can be facilitated
by noticing that upon the substitutionL cos(pN)5l the
HamiltonianH0 coincides with the Hamiltonian

H5E
2`

`

@jkck
†ck2l~c1c†!~ck2ck

†!#dk ~C15!

in Eq. ~44! of Ref. 13. This Hamiltonian was diagonalized
the form13

H5E1E
0

`

jk~Ck
†Ck1C̃k

†C̃k!dk, ~C16!

whereE is the ground state energy of the HamiltonianH and
the fermion operatorsCk and C̃k are given by

Ck5
jk

Ajk
21G2

ck2c2k
†

A2
2

A2l

Ajk
21G2

~c1c†!

1
G

pAjk
21G2E2`

` djk8

jk2jk8

ck82c2k8
†

A2
, ~C17!

C̃k5~ck1c2k
† !/A2. ~C18!

Here G54pl2/vF , which in our notations becomes E
~68!.

To find Green’s functions~C14! we invert transformation
~C17! and obtain

ck2c2k
†

A2
52

G

p
E

2`

` djk8

jk2jk8

u~jk8!Ck81u~2jk8!C2k8
†

Ajk8
2

1G2

1
jk

Ajk
21G2

@u~jk!Ck1u~2jk!C2k
† #, ~C19!

c1c†5223/2lE
0

` dk

Ajk
21G2

~Ck1Ck
†!. ~C20!
,

n

04530
Using these results, the definition ofC, Eq. ~64!, and the
form @Eq. ~C16!# of the Hamiltonian, we easily obtain th
Green’s functions

G1~ t !5
2G

p
sgntE

2`

` dj

j21G2

ejutu

ebj11
, ~C21!

G2~ t !52
4l

vF
E

2`

` jdj

j21G2

ejutu

ebj11
. ~C22!

The Green’s functionsG1(t) andG2(t) are odd and even
functions oft, respectively. Also noting thatdxt(t) given by
Eq. ~45b! is invariant with respect to the change of variabl
t→t2t, we conclude that the contributions of the seco
and third terms in Eq.~C13! to integral ~C10! are equal to
each other. Finally, the first term in Eq.~C13! does not con-
tribute to Eq.~C10! because it is independent oft, and the
time integral ofdxt(t) vanishes. Therefore we rewrite Eq
~C10! as

Ks
(1)~t!522L sin~pN!E

0

b

dxt~ t !G1~ t !G2~t2t !dt.

~C23!

Without loss of generality we can assumeG;T!EC . Since
dxt(t).2(p2T/2EC)cot@pTt# near t50,b @see Eq.~48!#,
integral ~C23! diverges logarithmically att→0 and t→b.
These divergences are cut off at the short time scaleEC

21 and
the long time scale min$G21,T21%. Due to the fact thatG1
(10)G2(t)52G1(b20)G2(t2b), the two divergences
add up. Therefore with logarithmic accuracy correlator~C23!
is given by

Ks
(1)~t!5

2pL

EC
sin~pN!G1~10!G2~t!ln

EC

T1G
.

~C24!

SubstitutingG1(10)51 and expression~C22! for G2, we
arrive at Eq.~67!.
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